中日经济技术交流与合作信息平台
中日经济技术研究会 | 北京唐藤经济技术咨询有限公司
中日通专题

    中国的高铁开通,急急忙忙从图书馆借来数本新干线的书苦读,正好原来的本行的是电机拖动,看起来驾轻就熟。看了几本书,就敢壮着胆子得出了结论:新干线是个好东西,中国的中华之星为什么会出局,法国的TGV和德国的ICE从开始就是陪太子读书的烟雾弹。铁道部从一开始就选择了新干线,这个选择从技术角度是非常合理的,也是非常英明的,但采取这种曲线迂回方式就不光明磊落了,不知道藏着什么“鬼”。 


    本文主要从专业技术角度分析入手,新干线的技术沿革及与其它车型的比较。力图通俗易懂。 


一、 新干线简单的技术沿革 


    新干线的设想从战前就开始了,战后随着日本经济的高速发展,东京--大阪间(东海道线)的客流急速增长,旧有铁路不能满足要求。日本的土地狭窄,不能靠增加铁路缓解客流压力,而是要靠提高车速和行车密度来满足要求。日本的铁路是窄轨的,轨距1067mm,时速160km就到了极限。采用标准轨轨距 1435mm,时速200km以上,彻底甩开原来的铁路线,于是被称为“新干线”。 


    1964 年10月,新干线正式通车,也可以算是迎接东京奥运会的献礼工程。新干线并不是传说中的那么安全可靠,最初的几年事故频繁,几乎天天有故障,幸运的是没有旅客伤亡,但却有维修人员伤亡。《新干线安全神话はこうしてつくられた》(新干线的安全神话是这样创造的),作者是齐藤雅男,当年是新干线抢修 


    队的队长,讲述他当年的故事。新干线开通不久,多次出现半路抛锚,列车在半路断电,没有照明没有暖气,乘客在寒风中忍耐,几小时后他们才抵达现场。还有脱轨事故、车轴断裂、车厢漏水、厕所和车门被吹飞等等等等。还有线路方面的故障,铁路不均匀沉降,信号系统故障。写出来于是成了这本厚书。 


    幸好新干线诞生在日本,如果在中国,这么多初期故障早就被枪毙了,中华之星和运十就是此命运吧。作者带领队伍顽强拼搏,排除故障,查找原因,改进设计,改进制造工艺。在不断失败挫折中,积累了konw--how。新干线逐步成长,越来越强壮,创造了安全运行40年的神话。 


    这最初的被称为0系的新干线,从1964年开始到1985年,共生产了21年,合计产量3216辆,是产量最高的高速列车,奠定了日本高速铁路的技术基础。总设计师当年到日本访问,乘坐的就是这0系新干线。20年一贯制,也幸好新干线诞生在日本,被日本当作骄傲,要在中国会被视为计划经济保守落后的标志,批判的声音铺天盖地。 


    不愿意忍受初始的故障,也不愿意忍受20年一贯制,直接就想享受最新最好的东西。这大概是中国诞生不了高速铁路及其它技术的原因吧。也是成不了现代化国家的原因。 0系新干线采用直流电机驱动,分散动力,每个车轴一台直流电机,功率185kw。 


    调速采用变压器抽头,机械开关切换电压。电磁制动时,电动机处于发电机状态,发出的电能用电阻消耗。0系新干线的技术是异常简单的,只可惜当年总设计师乘坐新干线时只知道享受去了,眼睛看不远,没有想到回来自己做。按照当时的技术能力,集中力量攻关,造出0系新干线应该没有什么问题。 


    系新干线的技术虽然简单,但缺点也是显而易见的。直流电机虽然控制简单,实现容易,但有整流器和电刷部件,维护工作量大,寿命短,也限制了速度提高。电磁制动时,电能不能回送电网,只能用电阻变为热白白损失掉。进入80年代,随着电力半导体技术的逐步成熟,逐步从直流向交流电机驱动过渡。 


    从直流向交流过渡不是一蹴而就,有个缓慢的技术进展过程。1985年开始,在100,200,400系的新干线上采用可控硅调相调速。用可控硅取代0系新干线上的机械开关切换电压,实现无级电压调节,还是使用直流电机驱动。400系是最后一种采用直流电机驱动的新干线,1991年制造,用于1992年开业的山形新干线。 

 

责任编辑:玲儿